Glacier Crevasses: Searching for Curious Factoids

Posted by William Colgan on June 01, 2015
Glaciology History

Along with some co-authors, with whom I am preparing a review paper about glacier crevasses, I am currently searching for a citation for the “deepest air-filled crevasse depth” measured to date. Although there seems to be some anecdotal assertions of 50 m deep crevasses in popular literature, presently, the deepest measured air-filled crevasse depth we have come across in the peer-reviewed literature is a third-hand account of a crevasse rescue in Palmer Land, Antarctica, in 1947, where crevasse depth is noted as “110 feet” (or 34 m). The rescue, one of many briefly recounted in Schuster and Rigsby (1954), reads:


One of many crevasse rescues recounted in Schuster and Rigsby (1954).

We presume that someone, somewhere, must have measured a deeper air-filled crevasse depth. I should note, we are aware that deeper crevasse depths have been inferred (rather than actually measured). For example, Hambrey (1976) suggests that the advection of crevasse traces c. 40 years down-glacier from their crevasse field of origin, where surface ablation averages c. 2 m/a, would infer that the fracture tips of crevasses reach c. 80 m depth within the crevasse field. Mottram and Benn (2009) recount the obvious challenge in accurately measuring the depth of an almost infinitely tapering fracture! For the purpose of our review paper, we are most interested in bona fide measurements, such as those made by either ranging devices or rappelling personnel, rather than someone just looking into the abyss and estimating “about X m deep”.

We are quite eager to see if anyone can point us in the direction of a deeper air-filled crevasse measurement. Naturally, we would also welcome (and duly attribute!) any other curious crevasse factoids or photographs that might be suitable for spicing up our meandering tour through the past seventy years of glacier crevasse literature. For example, we think we have identified the widest documented regularly spaced crevasse (air-gap width of 33 m!), which was observed in 1955 by Meier et al. (1957) at Blue Ice Valley, Greenland. We must admit, however, that we do most of our learning in the peer-reviewed literature, so we suspect that more adventurous souls (who might actually do some learning in crevasses!) may possess some alternate knowledge!


Thanks to some graphic assistance from Cheryl McCutchan (, we can merge strain rate and surface morphology maps in older studies, like this depiction of a 33 m wide crevasse at Blue Ice Valley, Northwest Greenland, from Meier et al. (1957).

Hambrey, M. 1976. Structure of the glacier Charles Rabots Bre, Norway. Geological Society of America Bulletin. 87: 1629-1637.

Meier, M., J. Conel, J. Hoerni, W. Melbourne, C. Pings and P. Walker. 1957. Preliminary Study of Crevasse Formation: Blue Ice Valley, Greenland, 1955. Snow, Ice and Permafrost Research Establishment. Report 38.

Mottram, R. and D. Benn. 2009. Testing crevasse-depth models: a field study at Breiðamerkurjokull, Iceland. Journal of Glaciology. 55: 746-752.

Schuster, R. and G. Rigsby. 1954. Preliminary Report on Crevasses. Snow, Ice and Permafrost Research Establishment. Special Report 11.

Twitter: @GlacierBytes

Tags: , , , , ,

1 Comment to Glacier Crevasses: Searching for Curious Factoids

  • I recall Tavi Murray telling me once that she had abseiled down a crevasse in Antarctica (presumably on a 50m rope) and still had lots of air space below her when she got to the end of the rope…
    Maybe she would have a more precise number. The ones I measured at Breidamerkurjokull were nothing like as big, but it’s a smaller glacier and not moving so fast…

    An interesting alternative metric is of course spacing, since a single crevasse should penetrate deeper than a closely spaced field of crevasses, as you know…

Leave a Reply

Your email address will not be published. Required fields are marked *