Altimetry

Greenland Ice Sheet mass loss from combined CryoSat-2 and ICESat-2 altimetry

Posted by William Colgan on March 31, 2022
Climate Change, New Research, Sea Level Rise / No Comments

We have a new open-access study out in the current volume of Journal of Geophysical Research that brings together both radar and laser altimetry measurements to assess the mass balance of the Greenland Ice Sheet between 2011 and 2020. Our assessment shows that the ice sheet lost approximately 498 Gt of ice volume, corresponding to approximately 7 mm of global sea-level equivalent during this time. The peak loss year was from April 2019 to April 2020, when the ice sheet lost 1.4 mm of global sea-level equivalent, which is equivalent to losing 15,850 tonnes of ice per second for an entire year. These values reflect only the ice sheet proper, and ignore Greenland’s peripheral glaciers. 

Figure 1 – Annual mass loss, partitioned into meltwater runoff (SMB) and iceberg calving (Dynamic) components, across the eight major ice-sheet sectors during 2011-2020. Central map shows the average ice volume change over 2011-2020 resolved from both CryoSat-2 and ICESat-2 altimetry measurements. Individual glaciers indicated: Jakobshavn Isbræ (JI), Helheim Glacier, Kangerlussuaq Glacier, Nioghalvfjerdsfjorden Glacier, the Zachariae Isstrøm, Storstrømmen Glacier, Petermann Glacier, Humboldt Glacier, and Northeast Greenland Ice Stream.

Over the study period, we estimate that approximately 43% of the ice loss was due to ice dynamics (i.e. more iceberg calving). Surface mass balance, or meltwater runoff, was responsible for the remaining approximately 57% of mass loss. This partition of mass loss varies tremendously between ice-sheet catchments and through time. This allows us to see the ice-sheet responding to recent climate forcing at the scale of individual seasons and catchments. Our assessment even resolves mass loss changes at the level of individual glaciers. For example, we can see that after a brief period of ice thickening during 2018 and 2019, Jakobhavn Isbræ has now returned to substantial ice thinning. 

If you’re really into satellite altimetry, we also make a rather unique cross-comparison between ICESat-2 laser measurements and CryoSat-2 radar measurements. While laser altimetry enjoys a near-complete surface scattering of the incoming laser pulse, radar altimetry has substantial volume scattering, meaning that the incoming radar pulse penetrates some depth into the ice sheet. This makes it difficult to assimilate both laser and radar altimetry measurements into a common processing pipeline. But, after applying the necessary volume-scattering correction to the radar measurements, we can assimilate both the ICESat-2 and CryoSat-2 observations into a common framework that shows good agreement (±8 cm/yr) during the common 2019/20 year.

Figure 2 – Ice-sheet volume change over the April 2019 to April 2020 period from ICESat-2 laser altimetry (A), CryoSat-2 radar altimery (B) and their difference (C). This year of peak mass loss, during which time the ice sheet was well-sampled by both altimeters, saw a record ~498 Gt of ice loss from the ice sheet.

Finally, to be consistent with an open science mandate and help the community move forward as fast as possible, we make the annual (April to April) ice-sheet maps of volume change that we assess at 1 km spatial resolution available for download at: https://datadryad.org/stash/share/gRoJh1JfpF4EA1d_Prsa_KIju9z2hJXWvXE5J1X2d8I. We hope these data will be useful for not only inter-study altimetry comparisons, but also for initializing models that calculate the elastic uplift of Greenland’s bedrock and evaluating ice flow models that simulate recent ice-sheet mass loss. 

Khan, S. A., Bamber, J. L., Rignot, E., Helm, V., Aschwanden, A., Holland, D. M., van den Broeke, M., King, M., Noël, B., Truffer, M., Humbert, A., Colgan, W., Vijay, S., and Kuipers Munneke, P. (2022). Greenland mass trends from airborne and satellite altimetry during 2011–2020. Journal of Geophysical Research: Earth Surface. 127. e2021JF006505. https://doi.org/10.1029/2021JF00650

Tags: , , , , , , , ,

28-Year Record of Greenland Ice Sheet Health

Posted by William Colgan on January 14, 2021
Climate Change, New Research, Sea Level Rise / No Comments

We have a new open-access study about Greenland Ice Sheet mass balance – or health – in the current issue of Geophysical Research Letters. In this study, we present a new 28-year record of ice-sheet mass balance. This record is relatively unique for two reasons.

Firstly, because of its length. The most recent ice-sheet mass balance inter-comparison exercise (IMBIE2) clearly highlighted how the availability of ice-sheet mass balance estimates has changed through time. During the GRACE satellite gravimetry era (2003-2017), there are usually more than twenty independent estimates of annual Greenland Ice Sheet mass balance. Prior to 2003, however, there are just two independent estimates. Our new 1992-2020 mass balance record will therefore provide especially welcomed additional insight on ice-sheet mass balance during the 1990s.

Figure 1 – Greenland Ice Sheet mass balance estimated by IMBIE2 between 1992 and 2018. The number of independent estimates comprising each annual estimate is shown. Prior to 2003, there are only 1 or 2 independent estimates of ice-sheet health each year.

Secondly, because of its consistency. This new mass balance record has been constructed by merging radar altimetry measurements from four ESA satellites (ERS-1/2, ENVISAT, CryoSat-2 and Sentinel-3A/B) over nearly three decades into one consistent framework. While all four of these satellites use the same type of Ku-band radar altimeter, to date, their measurements have usually been analyzed independently of each other. This time, however, we use machine learning to merge the elevation changes measured by these similar-but-different satellites into a common mass balance signal through space and time. This makes our new record the only satellite altimetry record that spans the entire IMBIE period.

Figure 2 – Comparison of our new multi-satellite radar-altimetry derived record of ice-sheet health (“Radar-VMB”) with two records estimated by the input-output method (“Colgan-IOMB” and “Mouginot-IOMB”), as well as one record estimated by satellite gravimetry (“GRACE-GMB”).

When we compare our new radar altimetry record of mass balance to two existing input-output records of mass balance, we find good agreement in the capture of Greenland’s high and low mass balance years. These other two multi-decade records are derived from the input-output method, in which estimated iceberg calving into the oceans is differenced from estimated surface mass balance (or net snow accumulation) over the ice sheet. While the input-output method often has limited spatial (and temporal) resolution, our radar altimetry derived record can resolve spatial variability in mass balance across the ice sheet every month since 1992.

Figure 3 – Our multi-satellite radar-altimetry derived map of declining ice-sheet health over the (a) the 1992-1999, (b) the 2000-2009, and (c) the 2010-2020 periods.

While our new long-term record provides a new overview of the health of the Greenland ice sheet, it can also be helpful to understand the processes that influence ice-sheet health. For example, we see a sharp increase in mass balance between 2016 and 2017. When we look at this event in detail, we can attribute it to unusually high snowfall in fall 2016, especially in East Greenland, and unusually little surface melting in summer 2017, throughout the ice-sheet ablation area. We estimate that the 2017 hydrological year was likely the first year during the 21st Century during which the ice sheet was actually in a state of true “mass balance” – or equilibrium – as opposed to mass loss.

The development of this new dataset was primarily funded by the European Space Agency (ESA), with a little help from the Programme for Monitoring of the Greenland Ice Sheet (www.promice.dk). Our multi-satellite Ku-band altimetry mass balance record is now available as tabulated data – both for the ice sheet, as well as the eight major ice-sheet drainage sectors – at https://doi.org/10.11583/DTU.13353062. Within the next two years, the ongoing Sentinel-3A/B satellite missions are clearly poised to extend Greenland’s radar altimetry record to three decades. This will allow us to start assessing ice-sheet health using the statistics of a 30-year climatology record. This keeps us excited at the prospect of updating this record in the near future. Stay tuned!

Simonsen, S., V. Barletta, W. Colgan and L. Sørensen. 2021. Greenland Ice Sheet mass balance (1992-2020) from calibrated radar altimetry. Geophysical Research Letters. L61865. doi:10.1029/2020GL091216.

Tags: , , , , , , , , , , , ,

Hybrid Gravimetry and Altimetry Mass Balance

Posted by William Colgan on July 07, 2015
Communicating Science, New Research, Sea Level Rise / No Comments

We have a new study in this month’s Remote Sensing of Environment, which examines satellite-derived glacier mass balance in Greenland and the Canadian Arctic1. Satellites are generally used to assess glacier mass balance through changes in volume (via satellite altimetry) or changes in mass (via satellite gravimetry). While satellite altimetry observes volume changes at relatively high spatial resolution, it necessitates the forward modeling of firn processes to convert volume changes into mass changes. Conversely, the cryosphere-attributed mass changes observed by satellite gravimetry, while very accurate in absolute terms, have relatively low spatial resolution. In this study, we sought to combine the complementary strengths of both approaches. Using an iterative inversion process that was essentially sequential guess-and-check with a supercomputer, we refined gravimetry-derived observations of cryosphere-attributed mass changes to the relatively high spatial resolution of altimetry-derived volume changes. This gave us a 26 km spatial resolution mass balance field across Greenland and the Canadian Arctic that was simultaneously consistent with: (1) glacier and ice-sheet extent derived from optical imagery, (2) cryospheric-attributed mass trends derived from gravimetry, and (3) ice surface elevation changes derived from altimetry. We have made digital versions of this product available in the supplementary material associated with the publication.

Figure_1

Figure 1 – Observational data inputs to our inversion algorithm. A: Cryosphere-attributed mass changes observed by gravimetry. B: Land ice extent observed by optical imagery. C: Ice surface elevation changes observed by altimetry.

To make sure our inferred mass balance field was reasonable, we evaluated it against all in situ point mass balance observations we could find. Statistically, the validation was great, yielding an RMSE of 15 cm/a between the inversion product and in situ measurements. Practically, however, this apparent agreement largely stems from the fact that we could only find forty in situ point mass balance observations against which to compare. Evaluating our area-aggregated sector-scale mass balance estimates against all previously published sector-scale estimates provides a more meaningful validation. This suggests the magnitude and spatial distribution of inferred mass balance is reasonable, but highlights that the community needs more in situ point observations of mass balance, especially from peripheral glaciers and regions of high dynamic drawdown in Greenland. (For the glaciology hardcores I will note that “mass balance” is distinct from “surface mass balance”, in that the former measurement also includes the ice dynamic portion of mass change.)

Figure_11_corrected

Figure 2 – A comparison of similar sector scale mass balance estimates and associated uncertainties across Greenland and the Canadian Arctic. Dashed lines denote estimates that pertain to the Greenland ice sheet proper (i.e. exclusive of peripheral glaciers). Jacob et al. (2012) estimates pertain to Canada, while Sasgen et al. (2012) estimates pertain to Greenland.

This new inversion mass balance product, which we are calling “HIGA” (Hybrid glacier Inventory, Gravimetry and Altimetry), suggests that between 2003 to 2009 Greenland lost 292 ± 78 Gt/yr of ice and the Canadian Arctic lost  42 ± 11 Gt/yr of ice. While the majority of Greenland’s ice loss was associated with the ice sheet proper (212 ± 67 Gt/yr), peripheral glaciers and ice caps, which comprise < 5 % of Greenland’s ice-covered area, produced ~ 15 % of Greenland mass loss (38 ± 11 Gt/yr). A good reminder that ice loss from “Greenland” is not synonymous with ice loss from the “Greenland ice sheet”. Differencing our tri-constrained mass balance product from a simulated surface mass balance field allowed us to assess the ice dynamic component of mass balance (technically termed the “horizontal divergence of ice flux”). This residual ice dynamic field infers flux divergence (or submergent ice flow) in the ice sheet accumulation area and at tidewater margins, and flux convergence (or emergent ice flow) in land-terminating ablation areas. This is consistent with continuum mechanics theory, and really highlights the difference in ice dynamics between the ice sheet’s east and west margins.

Figure_13

Figure 3 – Spatially partitioning the glacier continuity equation in surface and ice dynamic components. A: Transient glacier and ice sheet mass balance. B: Simulated surface mass balance. C: Residual ice dynamic (or horizontal divergence of ice flux) term. The ∇Q color scale is reversed to maintain blue shading for mass gain and red shading for mass loss in all subplots. Color scales saturate at minimum and maximum values. Black contours denote zero.

As with some scientific publications, this one has a bit of a backstory. In this case, we submitted a preliminary version of the study to The Cryosphere in December 2013. After undergoing three rounds of review at The Cryosphere, the first one of which is archived in perpetuity here, it was rejected, primarily for insufficient treatment of the uncertainty associated with firn compaction. Coincidentally, on the same day I received The Cryosphere rejection letter, I received a letter from the European Space Agency (ESA) granting funding for a follow-up study. A mixed day on email indeed! After substantial retooling, including a discussion section dedicated to firn compaction and the most conservative error bounds conceivable, we were happy to see this GRACE-ICESat study funded by NASA and the Danish Council for Independent Research appear in Remote Sensing of Environment. The editors at both journals, however, were very helpful in moving us forward. Our ESA-funded GRACE-CryoSat product development is now ongoing, but a sneak peek is below.

ESA_partition

Figure 4 – Same as Figure 3, except using a 5 km resolution GRACE-CryoSat inversion product instead of a 26 km resolution GRACE-ICESat inversion product. Colorbars are different in shading, but identical in magnitude.

Reference

1W. Colgan, W. Abdalati, M. Citterio, B. Csatho, X. Fettweis, S. Luthcke, G. Moholdt, S. Simonsen, M. Stober. 2015. Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic. Remote Sensing of Environment. 168: 24-39.

Tags: , , , , , ,