firn

Firn Permeability: New Use of an Old Technique

Posted by William Colgan on March 06, 2017
Communicating Science, New Research / No Comments

We have a new study out this month in Frontiers in Earth Science1 that describes using an old-school hydrogeology method on the Greenland Ice Sheet. We used pump-testing, which has been conventionally used to measure soil permeability for groundwater flow, to infer the permeability of ice-sheet firn to meltwater flow. We wanted to quantitatively measure how massive ice layers formed by refreezing meltwater in the near-surface ice sheet firn could inhibit meltwater flow in subsequent years.

firn3

Figure 1 – The low tech and low cost pump-testing device used to infer firn permeability on the Greenland Ice Sheet. A vacuum is applied at depth in the sealed vacuum borehole and the resulting pressure response is measured in the sealed monitoring borehole.

In conventional pump-testing, water is pumped out of a borehole at a controlled rate, and the groundwater level response, or drawdown is observed in a monitoring borehole located some distance away. We did something similar in the ice-sheet firn, pumping air out of a vacuum borehole and measuring the air pressure response is a sealed monitoring borehole about one meter away. We did pump tests at six ice sheet sites that had varying degrees of massive ice layers in the near-surface firn.

We found that vertical permeability between firn layers was generally much lower than horizontal permeability within a firn layer, and that vertical permeability decreased with increasing ice content. At the lowest elevation site, where meltwater production and refreezing is most prevalent, we drilled into an exceptionally massive ice layer the pump borehole was able to maintain an effective vacuum. In other words, thick massive ice layers are indeed impermeable to fluids. That was a little surprising!

firn_permeability

Figure 2 – Inferred horizontal (kr) and vertical (kz) firn permeability values at five ice-sheet sites. Horizontal blue lines indicate the depths of ice layers at each site. Vertical cyan and magenta shading represents inferred permeability limits.

While it may sound esoteric, the permeability of near-surface firn is an increasingly visible topic in ice-sheet research. Studies have shown that firn can act to either buffer sea level rise by absorbing meltwater2, or enhance sea level rise by forming impermeable refrozen ice layers3. As climate change increases meltwater production within the historical accumulation zone of the ice sheet, a greater area of ice-sheet hydrology will be influenced by refrozen ice layers. In future, higher vacuum pressures and repeated measurements should allow firn permeability to be measured over larger scales to improve our understanding of changing firn permeability.

For now, the proof-of-concept pump-testing device is relatively low tech and low cost. Aside from air-pressure sensors and a data logger, it was constructed by items you could find at your local hardware store; plastic PVC pipes channeling the power of a shop vacuum. Development of the firn pump-testing device was initiated by a University of Colorado Dean’s Graduate Student Research Grant to highly innovative lead-author Aleah Sommers, and it was deployed in collaboration with the FirnCover project during the 2016 field campaign.

WP_20160502_004

Figure 3 – Max Stevens and Aleah Sommers preparing to insert the pressure sensor and seal into the monitoring borehole at Saddle, Greenland, in May 2016.

1Sommers et al. 2017. Inferring Firn Permeability from Pneumatic Testing: A Case Study on the Greenland Ice Sheet. Frontiers in Earth Science. 5: 20.

2Harper et al. 2012. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature. 491: 240-243.

3Machguth et al. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change. 6: 390-393.

Tags: , , , , , , ,

Suppressed Melt Percolation in Greenland Firn

Posted by William Colgan on May 19, 2016
Climate Change, New Research / No Comments

We have a new open-access study in the current volume of Annals of Glaciology that tracks the fate of meltwater in the relatively porous near-surface firn of the Greenland Ice Sheet using temperature sensors1 (available here). One of the main goals of this study was to understand what fraction of the meltwater produced at the ice sheet surface percolates vertically into the firn and locally refreezes, rather than leaving the ice sheet as runoff and contributing to sea level rise. The total retention capacity of all of Greenland’s firn could be a non-trivial buffer against sea level rise2.

For this particular study, we deployed firn temperature sensors at depths of up to 15 m at KAN_U. The sensors were automated to record data throughout the year, between our spring sites visits. KAN_U is located at 1840 m elevation in Southwest Greenland in the lower accumulation area. While KAN_U traditionally receives more mass from snowfall than it loses from melt, our study focused on the “extreme” 2012 melt season, which was the first year since records began that there was more meltwater runoff than snowfall at the site.

Fieldwork

Figure 1 – Lead author Charalampos Charalampidis drilling a borehole on the Greenland Ice Sheet near KAN_U during the 2013 spring field campaign.

As refreezing meltwater releases a tremendous amount of latent energy, the location of refreezing meltwater within the firn can be inferred from temperature anomalies. We assessed temperature anomalies by comparing our observed firn temperatures against modeled firn temperatures, whereby the modeled temperatures only accounted for heat exchanged with the ice sheet surface via diffusion, not latent heat release. This allowed us to identify depths where firn temperatures were warmer than expected.

Babis_thermistor

Figure 2 – Automated observations of firn temperatures in the top 10 m of firn at KAN_U over four years. There is a strong annual cycle in near-surface firn temperatures.

We found that despite 2012 being an extreme melt year, meltwater percolation and refreezing only occurred to 2.5 m depth during the melt season. It was only after the end of the melt season that some meltwater managed to percolate and refreeze in discrete bands at 5.5 and 8.5 m depth. This inference of relatively inefficient vertical meltwater percolation during the melt season appears to support the idea that thick and impermeable ice lenses that had previously formed within the firn during 2010 were inhibiting the percolation of 2012 meltwater3.

Maintaining the relatively sensitive automatic weather station needed to accurately measure firn temperatures and surface energy fluxes in the relatively harsh ice sheet environment was no easy task. It took a number of scientists and funding agencies, which are listed in the acknowledgement section of the paper, to make this study possible. The KAN_U weather station continues to report real-time climate data via the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) data portal: www.promice.dk.

KAN_U_location

Figure 3 – A: Location of Kangerlussuaq Upper Station (KAN_U) on the Greenland Ice Sheet. B: A PROMICE climate station deployed to measure firn temperatures and surface energy budget.

1Charalampidis, C., D. van As, W. Colgan, R. Fausto, M. MacFerrin and H. Machguth. 2016. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet. Annals of Glaciology. doi:10.1017/aog.2016.2.

2Harper, J., N. Humphrey, W. Pfeffer, J. Brown and X. Fettweis. 2012. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature. 491: 240-243.

3Machguth, H., M. MacFerrin, D. van As, J. Box, C. Charalampidis, W. Colgan, R. Fausto, H. Meijer, E. Mosley-Thompson and R. van de Wal. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change. 6: 390–393.

Tags: , , , , , , ,

FirnCover 2016 Greenland expedition route

Posted by William Colgan on March 15, 2016
New Research / No Comments

Our Arctic Circle Traverse 2016 (“ACT16”) campaign is getting underway next month, and one look at the expedition map and it seems like we’ve outgrown our name! The ACT expedition series began in 2004, as snowmobile traverses roughly aligned with the Arctic Circle (66 °N) in support of the NASA Program for Arctic Regional Climate Assessment (PARCA). Since the 2013 initiation of the NASA FirnCover program, however, there has been a strong motivation to simultaneously sample more remote sites on the ice sheet. Firn compaction rate, the key process that FirnCover seeks to measure and model, is sensitive to both air temperature and snowfall rate. That means firn compaction rates vary with latitude and elevation, so when the FirnCover team goes to Greenland, we try to sample the ice sheet from North-South and low-high. That makes for a lot of travel!

ACT16_expedition_route

Figure 1 – Logistics behind our Arctic Circle Traverse 2016 (ACT16) expedition route. Red denotes US Air National Guard flights. Purple denotes NSF charter flights. Green denotes commercial flights. Blue denotes snowmobile traverses.

This April the ACT16 team will gather in Schenectady, NY to hitch a ride to Kangerlussuaq, GL with the US Air National Guard. After a pause in Kanger, the 109th Airlift Wing will deliver us to their Camp Raven skiway near Dye-2 in the ice sheet interior. Once in the ice sheet interior, the ACT16 team will fission into two groups, with a base group staying at Dye-2 for detailed firn measurements, and a traverse group snowmobiling to firn instrumentation sites along the Arctic Circle. Afterwards, our two groups will join up and catch an NSF charter flight off the ice to Kanger for some brief decompression. Then a subset of the ACT16 team will fly north to Summit and the NEGIS deep coring site for more firn instrumentation and measurements. Eventually we’ll make our way back to Kanger and head home on commercial flights via Iceland. With military and NSF charter flights, temperamental snowmobiles, and a mix of commercial airlines, the logistics for this five week field season are pretty intense!

C130_icecap

Figure 2 – A ski-equipped C-130 from the 109th Airlift Wing of the US Air National Guard taxiing on the Camp Raven skiway near Dye-2 during ACT13.

I’m most excited to visit NEGIS, not because I think it will be any more (or less) spectacular than any other location in the ice sheet interior, but simply because I haven’t been there before. A new dot on the map is always cause for delight. This field season, however, I will be keeping track of my personal carbon footprint, and I expect the charter flight to NEGIS and back is going to figure prominently in that calculation.

This post is cross-posted on the FirnCover blog.

Tags: , , , , , , , ,

Site II “Rabbit Warren”: Overwintering Required

Posted by William Colgan on January 14, 2015
Cold War Science / No Comments

Before giving birth to the first deep ice core during the 1957/1958 International Geophysical Year (IGY), “Site II” in Northwest Greenland was already hosting intensive research activities by the Snow, Ice and Permafrost Research Institute (SPIRE) of the US Army. In the summer of 1954, a small team traversed to Site II from Camp TUTO to excavate what would subsequently be referred to in SPIRE reports as the “rabbit warren”. It was a mishmash of rooms, shafts and tunnels, painstakingly excavated up to 30 m deep by chainsaws and shovels, in the porous near-surface firn of the ice sheet. The US Army, which was interested in the load bearing properties of firn and its deformation over time, instrumented the excavations with load plates and deformation grids. All very interesting you may think, but why should anyone care? Well, evidently, in the era before digital data loggers, the only way to collect data from these instruments was to station an engineer at the site throughout the winter.

Enter Mr. Gunther Frankenstein of the 1st Arctic Engineer Task Force, who enjoyed the pleasure of reading analogue gauges, presumably by flashlight, throughout the polar night of 1954/1955. To put winter at Site II in perspective, GC-Net has observed the average air temperature at nearby GITS to be -35°C in January1. In SIPRE reports, the “snow house” built for Mr. Frankenstein is described as being “consistent with modern military standards of comfort”, whatever those might have been. Somehow its 60 cm thick walls also “embod[ied] the best elements of both the native and American art”, a similarly intriguing design criterion. A tip of the hat to Mr. Frankenstein on the 60th anniversary of his ice sheet overwintering; I expect he might have some stories to share! Perhaps also a tip of the hat to the advent of digital data loggers, which have allowed subsequent generations of glaciologists to largely restrict ice sheet field work to a more comfortable summer time activity!

(skimmed from my upcoming Cold War science project.)

1Steffen, K. and J. Box. 2001. Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995-1999. Journal of Geophysical Research. 106: 33,951-33,964.

SiteII_rabbit_warren

A schematic overview of the experimental rooms, tunnels and shafts burrowed into the firn at Site II comprising the “rabbit warren”

SiteII-snow-house

A glancing mention of the snow house used by Mr. Gunther Frankenstein when stationed at Site II, Greenland throughout the 1954/1955 polar night.

Site_II_Traverse

Approximate location of Site II at the end of an overland traverse from Camp TUTO, in Northwest Greenland.

Tags: , , , , ,