BLOG

input-output method

Greenland ice loss: 8300 tonnes per second

Posted by William Colgan on November 19, 2014
Communicating Science, New Research, Sea Level Rise / 1 Comment

We have a new study coming out in Earth and Planetary Science Letters that looks into the mass loss of the Greenland ice sheet (Andersen et al., 2015). We used the “input-output” approach, whereby an estimated iceberg production rate is differenced from an estimated snow accumulation rate. The input-output approach we used was slightly different from previous studies (such as Rignot et al., 2008 or Enderlin et al., 2014) because the ice sheet perimeter across which we observed ice flow (or the “flux gate”) was relatively far inland. That meant we had to make a different assumption about the vertical velocity profile at the flux gate, as well as account for changes in ice volume between the flux gate and the tidewater glacier grounding lines. We also used a new combination of satellite-derived ice surface velocity product, airborne radar-derived ice thickness observations, and surface mass balance simulations. Despite all this, our mass loss estimate agrees pretty well with previous studies!

The numbers are pretty striking: We estimate that between 2007 and 2011 the Greenland ice sheet alone, not counting all the peripheral glaciers in Greenland, lost 262 Gt of ice per year. That works out to about 8300 tonnes per second! That means the Greenland ice sheet probably weighs 250,000 tonnes less than when you started reading this blog post. No wonder we can measure its mass loss by gravitational anomalies! The ice sheet is currently losing mass via both surface runoff (the difference between accumulation and melt) and ice dynamics (the production of icebergs). We estimate that runoff comprised about 61 % of the ice sheet’s mass loss, or about 5000 tonnes per second, with iceberg production comprising the remaining 3300 tonnes per second of mass loss. Some big numbers that confirm the Greenland ice sheet is presently raising global mean sea level by about 0.73 mm per year.

Enderlin, E., I. Howat, S. Jeong, M. Noh, J. van Angelen & M. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters. 41: doi:10.1002/2013GL059010.

Rignot, E., J. Box, E. Burgess & E. Hanna. 2008. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters. 35: doi:10.1029/2008GL035417.

Andersen, M., L. Stenseng, H. Skourup, W. Colgan, S. Khan, S. Kristensen, S. Andersen, J. Box, A. Ahlstrøm, X. Fettweis & R. Forsberg. 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters. 409: 89–95. doi:10.1016/j.epsl.2014.10.015.

Greenland_InputOutput

Diagram showing differences in methodology between our study (TOP) and previous studies (BOTTOM) in converted estimated ice flux (F) into estimated iceberg production (D). We adopt a higher elevation “flux gate”, which necessitates accounting for downstream changes in ice volume (∆S), as well as making a different assumption about the vertical velocity profile at the flux gate. We also use different velocity and ice thickness observations, and a different surface mass balance (SMB) model (from Andersen et al., 2015).

Tags: , , , ,