Rapid Sampling of Ice-Sheet Temperatures

Posted by William Colgan on September 10, 2018
Applied Glaciology, New Research / No Comments

We are starting a new two-year project to design, build and deploy a new type of ice-drill to measure temperatures at the ice-bed interface of the Greenland Ice Sheet. Why? Because we are unsure whether the bed is frozen or thawed beneath about one third of the ice sheet. As the rate at which ice flows is dependent on ice temperature – and basal ice temperature in particular – this translates into uncertainty in simulations of how ice sheet form and flow will evolve over time.

We suspect that climate change is likely driving an expansion of the thawed-bedded portion of the ice sheet — eroding the frozen-bedded portion — over time. But in the last sixty years, direct temperature measurements of the ice-bed interface have only been made at six inland ice-sheet locations. These scarce, but tremendously valuable, basal ice temperatures have been measured at the sites of ice core deep-drilling projects. These deep-drilling projects take months or even years to create a 30 cm wide borehole to the ice-sheet bed from which to retrieve delicate ice core.

Figure 1 – Schematic of the HOTROD melt-tip and cross-section of the umbilical cord. The umbilical cord will both power the melt-tip as well as contain embedded ice-temperature sensors.

This project will design, build and deploy a drill for rapid sampling of ice-sheet basal temperatures. HOTROD will use an approximately 5KW electric melt-tip to open 3 cm wide access boreholes to depths of 500 m within days. The HOTROD umbilical cord will not only power the melt-tip, but also have embedded temperature sensors that — with the melt-tip — make a one-way trip to the ice-sheet bed. The heart of the melt-tip will be recently designed heating elements intended for rapid heating of energy-efficient domestic hot water supplies.

In 1971, thermal drilling was used to recover the top 372 m of ice core at Dye-3. The Dye-3 deep ice core was subsequently completed to 2037 m with electro-mechanical drilling in 1981. Thermal drilling technology was last used in Greenland in 1974, to recover a 403 m ice core at Crete, Greenland1. While there’s been numerous hot-water drilling projects since then, the working memory of thermal drilling is fading. The goal of this project is to successfully deploy a melt-tip thermal drill to measure a 500 m deep ice-sheet temperature profile with less than ten days of drilling. Initial field-testing activities will begin in 2019.

Figure 2 – The Dye-3 ice-drilling trench. In comparison to the multi-year logistical footprints of deep ice-coring projects, the HOTROD melt-tip drill will require trace logistics.

We hope that the advent of rapid melt-tip drilling will be a disruptive technology within the sphere of ice-sheet research now dominated by conventional electro-mechanical and hot-water drilling systems. A concerted effort to sample more temperatures at the ice-bed interface may potentially shift our understanding of ice-sheet basal temperatures and even ice-sheet sensitivity to climate change. This project is funded by Villum Experiment, a programme of Villum Foundation that funds science and engineering projects that challenge the norm and have the potential to transform traditional approaches2.

1Langway, C. 2008. The History of Early Polar Ice Cores. Cold Regions Research and Engineering Laboratory. Technical Report 08-1.

2Villum Foundation. 2018. 53 bold ideas receive funding from VILLUM FONDEN.

Tags: , , , , , ,

Suppressed Melt Percolation in Greenland Firn

Posted by William Colgan on May 19, 2016
Climate Change, New Research / No Comments

We have a new open-access study in the current volume of Annals of Glaciology that tracks the fate of meltwater in the relatively porous near-surface firn of the Greenland Ice Sheet using temperature sensors1 (available here). One of the main goals of this study was to understand what fraction of the meltwater produced at the ice sheet surface percolates vertically into the firn and locally refreezes, rather than leaving the ice sheet as runoff and contributing to sea level rise. The total retention capacity of all of Greenland’s firn could be a non-trivial buffer against sea level rise2.

For this particular study, we deployed firn temperature sensors at depths of up to 15 m at KAN_U. The sensors were automated to record data throughout the year, between our spring sites visits. KAN_U is located at 1840 m elevation in Southwest Greenland in the lower accumulation area. While KAN_U traditionally receives more mass from snowfall than it loses from melt, our study focused on the “extreme” 2012 melt season, which was the first year since records began that there was more meltwater runoff than snowfall at the site.


Figure 1 – Lead author Charalampos Charalampidis drilling a borehole on the Greenland Ice Sheet near KAN_U during the 2013 spring field campaign.

As refreezing meltwater releases a tremendous amount of latent energy, the location of refreezing meltwater within the firn can be inferred from temperature anomalies. We assessed temperature anomalies by comparing our observed firn temperatures against modeled firn temperatures, whereby the modeled temperatures only accounted for heat exchanged with the ice sheet surface via diffusion, not latent heat release. This allowed us to identify depths where firn temperatures were warmer than expected.


Figure 2 – Automated observations of firn temperatures in the top 10 m of firn at KAN_U over four years. There is a strong annual cycle in near-surface firn temperatures.

We found that despite 2012 being an extreme melt year, meltwater percolation and refreezing only occurred to 2.5 m depth during the melt season. It was only after the end of the melt season that some meltwater managed to percolate and refreeze in discrete bands at 5.5 and 8.5 m depth. This inference of relatively inefficient vertical meltwater percolation during the melt season appears to support the idea that thick and impermeable ice lenses that had previously formed within the firn during 2010 were inhibiting the percolation of 2012 meltwater3.

Maintaining the relatively sensitive automatic weather station needed to accurately measure firn temperatures and surface energy fluxes in the relatively harsh ice sheet environment was no easy task. It took a number of scientists and funding agencies, which are listed in the acknowledgement section of the paper, to make this study possible. The KAN_U weather station continues to report real-time climate data via the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) data portal: www.promice.dk.


Figure 3 – A: Location of Kangerlussuaq Upper Station (KAN_U) on the Greenland Ice Sheet. B: A PROMICE climate station deployed to measure firn temperatures and surface energy budget.

1Charalampidis, C., D. van As, W. Colgan, R. Fausto, M. MacFerrin and H. Machguth. 2016. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet. Annals of Glaciology. doi:10.1017/aog.2016.2.

2Harper, J., N. Humphrey, W. Pfeffer, J. Brown and X. Fettweis. 2012. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature. 491: 240-243.

3Machguth, H., M. MacFerrin, D. van As, J. Box, C. Charalampidis, W. Colgan, R. Fausto, H. Meijer, E. Mosley-Thompson and R. van de Wal. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change. 6: 390–393.

Tags: , , , , , , ,