Climate Change

Greenland Ice Sheet Melt-Albedo Feedback

Posted by William Colgan on December 01, 2015
Climate Change, New Research / No Comments

We have a new study in the current issue of The Cryosphere that looks at the surface energy budget at a site on the Greenland Ice Sheet, and particularly the energy available for meltwater production, over a five-year period spanning the 2010 and 2012 exceptional melt years1. While both the summers of 2010 and 2012 were exceptionally warm, only 2012 resulted in a negative mass balance. In fact, 2012 was the first year since records began that there was more meltwater runoff than snowfall at the site (KAN_U at 1840 m elevation in Southwest Greenland).

In the study we describe how the 2010 exceptional melt year appears to have preconditioned the near-surface layers of the ice sheet to dramatically strengthen the melt-albedo feedback in the subsequent 2012 exceptional melt year. Essentially, we suggest that near-surface ice lenses created by refreezing meltwater in the 2010 melt season made the ice sheet surface transition more readily from relatively high albedo light snow to relatively low albedo dark ice in the 2012 melt season. The substantially darker 2012 ice sheet surface absorbed more solar energy, and therefore caused more melt per ray of sunshine, than in 2010. We estimate that this melt-albedo feedback resulted in approximately 58 % more solar energy absorbed, and available for melt, in 2012 than in 2010.

While 2010 and 2012 were exceptional melt seasons in the context of the past thirty years, they are likely to have foreshadowed the upcoming thirty years. As Greenland climate is now rapidly warming, summer melt intensity no longer oscillates around its long term mean, and instead previously exceptional events are becoming normal. We therefore speculate that under persistent climate change, the firn at the KAN_U site will likely become saturated with refrozen ice lenses, which will enhance the melt-albedo feedback and perhaps even inhibit the downward percolation of meltwater. Ultimately, this will accelerate the transition of the contemporary lower accumulation area underlain by firn into an ablation area underlain by superimposed ice.

Maintaining the relatively sensitive automatic weather station needed to accurately measure surface energy fluxes in the relatively harsh ice sheet environment was no easy task. It took a number of scientists and funding agencies, which are listed in the acknowledgement section of the paper, to make this study possible. The KAN_U weather station continues to report real-time climate data via the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) data portal: www.promice.dk.

2010_2012_Fluxes

Figure 1 – Monthly mean energy fluxes observed at KAN_U: shortwave (ES), longwave (EL), sensible heat (EH), evaporative (EE), geothermal (EG), precipitation (EP) and melt (EM). The melt flux was calculated as a residual.

KAN_U_location

Figure 2 – A: Location of Kangerlussuaq Upper Station (KAN_U) on the Greenland Ice Sheet. B: The PROMICE climate station deployed to measure surface energy budget.

1Charalampidis, C., D. van As, J. Box, M. van den Broeke, W. Colgan, S. Doyle, A. Hubbard, M. MacFerrin, H. Machguth and C. Smeets. 2015. Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. The Cryosphere. 9: 2163-2181.

Tags: , , , , , , ,

New Book: Iluliaq – Isbjerge – Icebergs

Posted by William Colgan on September 22, 2015
Climate Change, Communicating Science, Glaciers and Society / No Comments

I was very pleased to have the opportunity to write a preface for Iluliaq – Isbjerge – Icebergs, which contains 100+ pages of watercolours and photographs depicting diverse icebergs around Greenland, along with accompanying Danish/English narration about the iceberg lifecycle (ISBN 978-87-93366-34-3 | available here). I am very supportive of projects like this, which seek to bridge the arts-sciences chasm. It was actually science-editing the iceberg factoids in this book that compelled me to start providing mass loss rates in equivalent tonnes per second in my subsequent publications. I now find saying that Greenland is losing 262 gigatonnes of ice per year, is more abstract than saying it is losing 8300 tonnes per second. Evidently, my perspective was shifted by this delightful project! Below I provide the preface in full.

iluliaq

Preface for Iluliaq – Isbjerge – Icebergs:

“While an individual iceberg is ephemeral, icebergs are a ubiquitous feature of Greenland’s landscape. The shifting nature of icebergs, a constantly drifting and capsizing population, makes them challenging to observe. As they are partway through the transition from glacier ice into ocean water, icebergs are somewhat peripheral to both glaciology/geology and oceanography. Despite these intrinsic difficulties in their study, however, icebergs have never been more important to society than today. Due to climate change, Greenland’s glaciers are now flowing faster than a century ago. The resulting increase in Greenland’s iceberg production is now raising global sea level by 2 cm each decade.

In contrast to the iconic climate change indicators of diminishing sea ice area and glacier volume, there are now more icebergs being produced than a century ago. This provides a very strong motivation to understand the iceberg lifecycle. This lifecycle begins with a thunderous calving at genesis, followed by years of slow drifting and reduction, and quietly ends when the last ice melts into water. In this book, Pernille Kløvedal Nørgaard, Martin von Bülow and Ole Søndergaard provide visually compelling insights on selected aspects of this lifecycle.

By ensuring they not only communicate the natural majesty, but also climatic importance, of Greenland’s icebergs, the authors are helping icebergs assume a rightful place in contemporary public consciousness. The sense of humility evoked by the icebergs depicted here will be familiar to Arctic enthusiasts. These photos and watercolours represent multiple expeditions and extensive travels around Greenland. Similar to documentarians and artists who have accompanied polar expeditions since the Victorian Era, the authors have intentionally sought out a harsh environment, and invited confrontation with adverse conditions, to encapsulate a unique feature of Earth that most people could otherwise never appreciate. Society benefits from such hardy souls, whose passion for nature allows bleak and inaccessible landscapes to be transmitted into our civilized homes.”

Tags: , , , , , ,

Vanishing Canada: Group of Seven Landscapes Under Climate Change

Posted by William Colgan on July 31, 2015
Climate Change, Communicating Science / 3 Comments

In collaboration with Virginia Eichhorn of the Tom Thomson Art Gallery, I am hoping to get a very interdisciplinary arts and sciences project underway that looks at the impact of recent and projected climate change on the Canadian landscapes painted by the Group of Seven. The exceptionally vivid expressionist landscape scenes painted by the Group of Seven between 1920 and 1935 have become Canadian cultural icons. The temperature and precipitation trends associated with climate change, however, are changing these landscapes, most visibly through changes in vegetation, snow and glacier extent, lake or sea ice extent, and flood or drought frequency (Figure 1). We intend to reframe Group of Seven paintings as unique time capsules of a vanishing Canada, rather than portraits of an intransient Canada.

Mount_Robson_mockup

Figure 1 – Highly visible landscape change at Mount Robson due to air temperature change. Red shading denotes glacier area change since Lawren Harris originally painted this scene c. 1930.

To do this, we are seeking to dispatch contemporary emerging artists across Canada, to landscapes featured in Group of Seven works, to re-paint impressions of these landscapes under one of three IPCC Representative Concentration Pathways (RCPs). These RCPS, ranging from RCP 4.5 to RCP 8.5, essentially range from “optimistic” to “pessimistic” CO2emissions reductions scenarios. For example, RCP 4.5 simulates 4.5 W/m2 increased radiative forcing in year 2100 relative to year 1850, while RCP 8.5 simulates 8.5 W/m2, or almost twice as much, anomalous radiative forcing associated with well-mixed greenhouse gases from anthropogenic sources.

Mock_up2

Figure 2 – Envisioning a landscape in 2100 under three IPCC scenarios that vary from the “optimism” of RCP 4.5 to the “pessimism” of RCP 8.5. Byng Inlet was originally painted by Tom Thomson c. 1920.

We are ultimately aiming for a cross-disciplinary arts and sciences exhibition that will place specific Group of Seven landscapes, and more broadly Canada’s landscape, in the context of ongoing climate change in a highly visual fashion. Inspired by ArtTracks150, we are hoping that Canada’s 150th birthday (July 2017) may provide a natural window of increased public awareness of centurial time-scales, during which we might briefly focus public attention on the multi-generational implications of climate change on the Canadian landscape. Virginia and I welcome you to contact us for more information on, and ways to get involved with, this project.

Tags: , , , , ,

Greenland Ice Sheet “Thermal-Viscous Collapse”

Posted by William Colgan on July 17, 2015
Climate Change, New Research / No Comments

We have a new study in the AGU open access journal Earth’s Future this month, which introduces the notion of thermal-viscous collapse of the Greenland ice sheet1. While people tend to think of ice as a solid, it is actually a non-Newtonian fluid, because it deforms and flows over longer time-scales. Of the many strange material properties of ice, the non-linear temperature dependence of its viscosity is especially notable; ice at 0 °C deforms almost ten times more than ice at -10 °C at the same stress. This temperature-dependent viscosity makes ice flow very sensitive to ice temperature. We know that the extra meltwater now being produced at the surface of the Greenland ice sheet, relative to 50 or 100 years ago, contains tremendous latent heat energy. So, in the study, we set out to see if the latent heat in future extra meltwater might have a significant impact on future ice sheet form and flow.

We first developed a conceptual model of what we called “thermal-viscous collapse”, which we define as the enhanced ice flow resulting from warming ice temperatures and subsequently softer ice viscosities. We decided there were three key processes necessary for initiating a thermal-viscous collapse: (1) sufficient energy available in future meltwater runoff, (2) routing of that extra meltwater to the ice-bed interface, and (3) efficient transfer of latent energy from meltwater to the ice. Drawing on previous model projections and observational process studies, and admittedly an injection of explicit speculation, we concluded that it is plausible to warm the deepest 15 % of the Greenland ice sheet, where the majority of deformation occurs, from characteristic Holocene temperatures to the melting-point in the next four centuries.

Figure_2

Figure 1 – Three key elements of thermal-viscous Greenland ice sheet collapse: (1) Sufficient energy available in projected Greenland meltwater runoff, (2) Routing of a fraction of meltwater to the interior ice-bed interface, and (3) Efficient energy transfer from meltwater to ice. This cross-sectional profile reflects mean observed Greenland ice surface and bedrock elevations between 74.1 and 76.4°N. Dashed lines illustrate stylized marine and land glacier termini.

We then used a simple (first-order Navier-Stokes) model of ice flow to simulate the effect of this warming and softening on the ice sheet over the next five centuries. We used a Monte Carlo approach, whereby we ran fifty simulations in which multiple key parameters were varied within their associated uncertainty. As may be expected, warming the deepest 15 % of the ice sheet by 8.8 °C, from characteristic Holocene temperatures to the melting-point, had a significant influence on ice sheet form and flow. Due to softer ice viscosities, the mean ice sheet surface velocity increased three fold, from 43 ± 4 m/yr to 126 ± 17 m/yr, resulting in an ice dynamic drawdown of the ice sheet, causing a 5 ± 2 % ice sheet volume reduction within 500 years. This is equivalent to a global mean sea-level rise contribution of 33 ± 18 cm (or just over one US foot). Of course, the vast majority of the sea level rise associated with thermal-viscous collapse would occur over subsequent millennia.

Figure_11

Figure 2 – Probability density time series of ensemble spread of 50 simulations in prescribed ice temperature (a), mean surface ice velocity (b), and ice volume (c), over a 200-year spin-up to transient equilibrium, and the subsequent 500-year combined transient forcing and spin-down period.

Perhaps a caveat or two: Just like simulating a marine instability induced collapse of the West Antarctic ice sheet, our simulation of a thermal-viscous collapse of the Greenland ice sheet is an entirely hypothetical end-member scenario. It is admittedly difficult to interpret end-member assessments when their probability of occurrence is unknown. In our case, we did not attempt to constrain the probability of a thermal-viscous collapse of the Greenland ice sheet, we merely demonstrated that initiating a thermal-viscous collapse appears plausible within four centuries, and assessed the associated sea-level rise contribution. Additionally, it may be debatable whether the combination of crevasses and reverse drainage can indeed route meltwater throughout the ice sheet interior, but I suppose that is a debate worth having!

Reference

1Colgan, W., A. Sommers, H. Rajaram, W. Abdalati, and J. Frahm. 2015. Considering thermal-viscous collapse of the Greenland ice sheet. Earth’s Future. 3. doi:10.1002/2015EF000301.

Tags: , , , , , , , ,

Greenland’s “Recent Mass Loss” Underestimated?

Posted by William Colgan on March 09, 2015
Climate Change, Communicating Science, New Research / No Comments

There are a variety of methods used to estimate the present rate of mass loss from the Greenland ice sheet, including satellite altimetry, satellite gravimetry and input-output assessments. All of these methods generally agree that since 2005 the ice sheet has been losing c. 250 Gt/yr of mass (equivalent to 8000 tonnes of ice per second). Partitioning this mass loss into climatic surface balance (i.e. snowfall minus runoff) and ice dynamic (i.e. iceberg calving) contributions is a little more challenging. Partitioning recent mass loss into surface balance or ice dynamic components requires us to look at the changes in each of these terms since a period during which the ice sheet was approximately in equilibrium. Conventionally, the ice sheet is assumed to have been in equilibrium during the 1961-1990 so-called “reference period”.1

Figure_6_mass_balance_monitoring

The three main methods of measuring present-day ice sheet mass balance: (1) snowfall input minus iceberg output, (2) changes in elevation using satellite altimetry, and (3) changes in gravity using satellite gravimetry (from Alison et al., 2014)5.

Our recently published study in the Annals of Glaciology takes a hard look at the mass balance of the high elevation interior of the Greenland ice sheet during the reference period2. We difference the ice flowing out of a high elevation perimeter from the snow falling within it, and conclude that the ice sheet was likely gaining at least 20 Gt/yr of mass during the reference period. This implies that rather than ice sheet mass balance decreasing from c. 0 Gt/yr (or “equilibrium”) during reference period to c. -250 Gt/yr since 2005, it may have actually decreased from c. +20 Gt/yr of subtle mass gain during reference period to c. -250 Gt/yr since 2005. This interpretation would mean the “recent” (pre-1990 to post-2005) mass loss of the ice sheet is actually 7 % greater than might conventionally be assumed (270 vs. 250 Gt/yr). Seven percent more recent mass loss than conventionally assumed might not sound like much, but it becomes important when we try to partition mass loss in surface balance or ice dynamics components.

reference_period

Illustration of how a subtle mass gain during reference period (1961-1990) , when the Greenland ice sheet is conventionally assumed to have been in approximate equilibrium, can influence the magnitude of “recent mass loss” used to partition surface balance and ice dynamics components of mass loss.

We also assessed whether surface balance or ice dynamics were responsible for subtle reference period mass gain. We concluded it was more likely long term ice dynamics, resulting from the downward advection through the ice sheet of the transition between relatively soft Wisconsin ice (deposited > 10.8 KaBP) and relatively hard Holocene ice (deposited < 10.8 KaBP). In 1985, Niels Reeh proposed that subtly increasing effective ice viscosity was resulting in cm-scale ice sheet thickening3. Increased iceberg calving, or enhanced ice dynamics, are conventionally assumed to be responsible for c. 100 Gt/yr of recent mass loss4. Since we conclude ice dynamics were likely responsible for subtle reference period mass gain, we are implying that mass loss due to ice dynamics may actually be c. 20 Gt/yr greater than conventionally assumed, or c. 120 Gt/yr rather than c. 100 Gt/yr since 2005. Without invoking any departures from the conventional view of changes in surface balance since reference period, this infers 20 % more mass loss due to ice dynamics since reference period. This becomes important if diagnostic ice sheet model simulations are calibrated to underestimated recent ice dynamic mass loss, which may subsequently bias prognostic model simulations to similarly underestimate future ice dynamic mass loss.

Wisconsin_Tiff

An ice sheet composed of relatively hard Holocene ice is theoretically c. 15 % thicker than one composed of relative soft Wisconsin ice. Today’s ongoing transition from Wisconsin to Holocene ice within the Greenland ice sheet should theoretically result in cm-scale transient thickening (after Reeh, 1985).

Pondering how a millennial-scale shift in ice dynamics may be responsible for subtle mass gain during the 1961-1990 period, and how that ultimately influences our understanding of present-day mass loss partition, is definitely a rather nuanced topic. I am guessing there are not many non-scientists still reading at this point. Spread over the high elevation ice sheet interior, a 20 Gt/yr mass gain is equivalent to a thickening rate of just 2 cm/yr, which is within the uncertainty of virtually all mass balance observation methods, including in situ point measurements. I suppose the thrust of our study is to be receptive to the idea that millennial scale ice dynamics may be contributing to a subtle ice sheet thickening that underlies both past and present ice sheet mass balance, and to appreciate the non-trivial uncertainty in partitioning recent mass loss into surface balance and ice dynamic components that stems from the particular reference period mass balance assumption that is invoked.

1Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard, I. Velicogna and B. Wouters. 2009. Partitioning Recent Greenland Mass Loss. Science. 326: 984-986.

2Colgan, W., J. Box, M. Andersen, X. Fettweis, B. Csatho, R. Fausto, D. van As and J. Wahr. 2015. Greenland high-elevation mass balance: inference and implication of reference period (1961-90) imbalance. Annals of Glaciology. 56: doi:10.3189/2015AoG70A967.

3Reeh, N. 1985. Was the Greenland ice sheet thinner in the late Wisconsinan than now?
Nature. 317: 797-799.

4Enderlin, E., I. Howat, S. Jeong, M. Noh, J. van Angelen and M. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters. 41: doi:10.1002/2013GL059010.

5Alison, I., W. Colgan, M. King and F. Paul. 2014. Ice Sheets, Glaciers, and Sea Level Rise. Snow and Ice-Related Hazards, Risks and Disasters. W. Haeberli and C. Whiteman. Elsevier. 713-747.

Tags: , , , , , , , ,

Glacier Mining: Geotechnical and Social Exceptionalism

Posted by William Colgan on November 07, 2014
Applied Glaciology, Climate Change, Glaciers and Society / 1 Comment

When the glaciology lexicon was in its infancy, Carl Benson described glaciers as “monomineralic metamorphic rocks” in his pioneering work with the US Army Engineers1. Given the lower density and strength of ice than coal, it may seem like glacier ice is an easy overburden to remove for open pit mining. Experience, however, has demonstrated that there are exceptional geotechnical challenges associated with removing glacier ice overburden. These challenges stem from geometry, hydrology and phase, all of which change far more rapidly in glaciers than hard rock2. The apparent surge of a waste rock pile at the Kumtor Mine, in Kyrgyzstan, highlights the exceptional geotechnical challenges confronting Centerra Gold in maintaining the world’s largest open ice pit mine.

With glaciers serving as a highly visible indicator of climate change, glacier mining projects often face exceptional social challenges in comparison to conventional hard rock mining projects. The Pascua Lama Mine, which spans the Chile-Argentina border, highlights how glacier preservation is a global movement that adapts to local issues. Glaciers therefore serve as the basis for a “glocal”, or globalized local, social movement3. Barrick Founder Peter Munk has commented on the social challenges confronting Pascua Lama: “It’s not enough to have money, it’s not enough to have reserves, it’s not enough to have great mining people. Today, the single most critical factor in growing a mining company is a social consensus – a license to mine.”4

The combination of long term increases in resource demand, retreating glaciers due to climate change, and improved mining technology and prospecting techniques, are making the exploitation of pro- and sub-glacial mineral deposits more feasible. This means a more widespread confrontation of the geotechnical and social exceptionalism of glacier mining in the coming decades!

Kumtor_1975_2013

Glacier and waste rock extent between 1975 and 2013 in the vicinity of Kumtor Mine (from Landsat archive).

PascuaLama

Glaciers in the vicinity of the Pascua Lama Mine on the Chile-Argentina border (from WikiCommons).

1Benson, C. 1962. Stratigraphic studies in the snow and firn of the Greenland ice sheet. Snow, Ice and Permafrost Research Esatablishment. US Army. Research Report 70.

2Colgan, W. and L. Arenson. 2013. Open-Pit Glacier Ice Excavation: Brief Review.
Journal of Cold Regions Engineering. 27: doi:10.1061/(ASCE)CR.1943-5495.0000057.

3Urkidi, L. 2010. A glocal environmental movement against gold mining: Pascua–Lama in Chile. Ecological Economics. 70: 219-227.

4Smith, C. 2014. Sustainability Challenges: When Good Intentions Backfire. NSEAD Knowledge

Additional Landsat images of Kumtor here.

Tags: , , ,

KSM Project gets provincial approval

Posted by William Colgan on November 03, 2014
Applied Glaciology, Climate Change, Glaciers and Society / No Comments

The Kerr-Sulphurets-Mitchell (KSM) gold mine in British Columbia received provincial approval last week. The federal permitting decision is expected in November. The suite of three open pits are in close proximity to glaciers, with the ultimate outline of the Mitchell pit intersecting the present extent of Mitchell Glacier. The proponent report filed by Seabridge Gold Inc states: “The current recession rate of the Mitchell Glacier has been estimated by Seabridge geologists at 100 m per year. As mining progresses, melting of the ice is expected to clear the area for the ultimate pit and create space needed for a series of diversion dams and ponds as well as the required debris catch basins upstream of the diversion inlets.” Seabridge is also seeking to excavate a 22 km long haulage tunnel that will convey 120,000 tonnes per day of ore underneath glaciers north of the open pits. A 38 km long glacier road, which ascends Berendon Glacier, crosses a local topographic divide, and descends an unnamed glacier, will provide winter access to the trio of open pits. The Berendon Glacier access road would be close proximity to the Knipple Glacier access road proposed by Pretium Resources Inc to access the nearby Bruce Jack Mine. Presumably the KSM project will be keeping a close eye regional glacier projections!

Controversial Canadian KSM mine gets key govt. permits

KSM (Kerr-Sulphurets-Mitchell) Project: Canadian Environmental Assessment Agency

KSM_glacier_road

Kerr-Sulphurets-Mitchell Project glacier access road during the winter. The road ascends Berendon Glacier in the east, crosses the local topographic divide, and descends an unnamed glacier in the west.

KSM_site_map

Site map of the Mitchell Pit at the Kerr-Sulphurets-Michell gold mine. Purple line denotes haulage tunnel. Dashed black line denotes ultimate extent of Mitchell Pit. White areas denote glacier extent.

 

Tags: , , , , , ,

Iceland Names “New” Glaciers

Posted by William Colgan on October 07, 2014
Climate Change / No Comments

This past week the Icelandic Meteorology Office named 130 glaciers on the Tröllaskagi Peninsula in north-central Iceland. Most of the new glacier names refer to local landmarks. Until recently, many of the previously unnamed glaciers had appeared to be white perennial snowfields, rather than blue ice glaciers, in satellite imagery. Retreating snow lines, however, have begun revealing underlying glacier ice since c. 1996. A glacier snowline marks the lowest elevation limit where year-round snow exists. Climate change is causing an upward migration of snowlines at most Arctic glaciers, due to increased surface melt during the summer season. So, although all of Iceland’s monitored glaciers are consistently exhibiting negative surface mass balance, and recent climate change has committed c. 35 ± 11 % of Iceland’s glacier volume (or c. 850,000,000,000 tons of ice!) to disappear, even in the absence of further climate change, some good new for Iceland: It’s glacier population is growing on paper!

Morgunblaðið: Um 130 nafnlausir jöklar

Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radić, V., and Zemp, M.: Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties, The Cryosphere, 7, 1565-1577, doi:10.5194/tc-7-1565-2013, 2013.

Tröllaskagi_Peninsula_Iceland

The glaciers of the Tröllaskagi Peninsula, Iceland. (from GoogleEarth)

Iceland_glaciers_recent_surface_mass_balance

Recent surface mass balance observations from Iceland’s monitored glaciers. The ice loss of Tungnaarjokull, Langjokull and Hofsjokull SW now exceeds 3000 mm of water equivalent per year. (data from Mernild et al., 2013)

Tags: , ,

A Thaw in the Siachen Glacier Conflict?

Posted by William Colgan on October 01, 2014
Climate Change, Glaciers and Society / No Comments

The Siachen Glacier conflict shows signs of thawing. This week Pakistan’s Senate Foreign Affairs Committee Chairman Haji Muhammad Adeel has called for Siachen Glacier to be declared a non-military zone. India and Pakistan have disputed ownership of the 70 km glacier, and 1000+ square kilometers of surrounding territory, since it was occupied by India in 1984. In the subsequent three decades of conflict India and Pakistan are estimated to have each suffered approximately 2000 fatalities, primarily due to extreme environmental conditions (a ceasefire was declared in 2003). The border between Pakistan and India in the Siachen Glacier region was left undeclared in the 1972 Simla Agreement.

Of interest to glacier watchers: Haji Muhammad Adeel cited increased human activities on the glacier that have accelerated surface melt, as well as increased natural hazards in the form of flash floods and changing weather patterns, in his call for both countries to withdraw their troops from the glacier basin. With approximately 3000 soldiers from each country stationed in the valley, the Siachen Glacier is presumably the most densely populated glacier in the world. If withdrawal does happen, the extensive military infrastructure would offer great logistical support for civilian science in a region where glaciers are an exceptionally important water source in a changing climate!

The Nation: Declare Siachen a non-military zone

Wikipedia: Siachen Conflict

Siachen_Glacier_solider_photo_The_Nation

Solider at Siachen Valley. (from The Nation: Declare Siachen a non-military zone)

 

Siachen_line_of_control_UN_map_clipped

An approximately 80 km gap, spanning Siachen Glacier, in the India-Pakistan line of control resulting from the 1972 Simla Agreement. (from Wikimedia Commons)

Tags: , ,

New Report: Greenland Gold Rush

Posted by William Colgan on September 26, 2014
Climate Change, New Research / 1 Comment

The Brookings Institute has just released “The Greenland Gold Rush: Promise and Pitfalls of Greenland’s Energy and Mineral Resources”. The report states that Greenland offshore exploration is now easier than in the past, due to a decrease in sea ice concentration and extent resulting from climate change. The acceleration of Greenland’s tidewater glaciers, however, will result in more icebergs that may “complicate” offshore activities. Onshore, the report finds that climate change has already “relaxed” some of the historical constraints of operating in Greenland, via a lengthening of the summer exploration season and the deglaciation of more land. As expected for a country that is approximately 80 % ice-covered, many onshore resource activities will likely occur in pro-glacial settings.

Report summary: “As the Arctic ice continues to melt due to global warming, Greenland’s mineral and energy resources – including iron ore, lead, zinc, diamonds, gold, rare earth elements, uranium and oil – are becoming more accessible. The political establishment in Greenland has made natural resource extraction a central part of its plans to become economically self-sufficient, and ultimately politically independent, from the Kingdom of Denmark. This will be no easy task, and it is made more difficult by Greenland’s rapidly aging population.”

The Brookings Institute report: http://www.brookings.edu/research/reports/2014/09/24-greenland-energy-mineral-resources-boersma-foley

Greenland_permitted_activities

Currently permitted resource exploration and exploitation activities in Greenland, both offshore (yellow) and onshore (blue). (from NunaGIS.gl)

Tags: ,