Posted by William Colgan
on April 14, 2015
Applied Glaciology,
New Research /
Comments Off on New Estimate of Ice Sheet Runoff at Isua Site
My colleague Lukas Arenson and I have a paper in the Proceedings of Mine Water Solutions in Extreme Environments this month, which uses the Isua site in Southwest Greenland as a case study for extreme runoff in proglacial environments (Arenson and Colgan, 2015). The recently approved Isua mine will be an open pit mine intersecting the ice sheet, with ice pit walls around about half the pit, to access what is presently a subglacial iron deposit (site overview here). Using a Monte Carlo approach, we estimate a 95 % (or two sigma) upper confidence limit of 2.8·109 L/day of ice sheet runoff potentially reaching the Isua site in July and August. While this potential inflow rate, equivalent to 44 t/s, is relatively large in the context of conventional mine water management, it is relatively small in the context of contemporary Greenland ice loss due to climate change, which is approximately 8,300 t/s when averaged over a year (Andersen et al., 2015).

Minimum and maximum plausible supraglacial ice sheet catchments associated with the Isua site. Shading denotes mean annual meltwater runoff over the 2004 to 2013. Background image source is Landsat 8 (source: Arenson and Colgan, 2015).
To place our estimate in context, London Mining Plc, the initial developer of the Isua site, presented a pre-feasibility study water balance in which ice sheet runoff into the pit was estimated as 7.8·106 m3/year (London Mining, 2011). Assuming a 60-day melt season, this is equivalent to an average site inflow of 1.3·108 L/day. Our estimate is therefore 22 times greater than the design estimate. There are many potential sources of uncertainty when assessing ice sheet runoff, including model uncertainty and climatic variability, but by far the biggest source of uncertainty is delineating the ice sheet catchment draining to a specific portion of the ice sheet margin. Regardless of whether 108 or 109 L/day of meltwater is flowing into the Isua site, it will certainly be a challenging operating environment, and will require some very adaptive engineering to minimize site contact water!

Proponent water budget for the Isua Mine (source: London Mining, 2011).

Oblique aerial photograph looking west from the Greenland ice sheet across the Isua site in 2011. Deeply incised supraglacial meltwater channels are visible draining towards the margin. (source: Lukas Arenson)
References
Andersen et al., 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters 409: 89-95.
Arenson and Colgan. 2015. Water management challenges associated with mining projects in Greenland. Proceedings of Mine Water Solutions in Extreme Environments. 533-543.
London Mining PLC. 2011. Isua iron ore project: Isua 15 Mtpa scoping study report.
Tags: contact water, Greenland, Isua, meltwater, Mine, runoff
Posted by William Colgan
on September 24, 2014
Applied Glaciology,
New Research /
Comments Off on Ice Excavation in an Open Ice Pit
I have a paper in this month’s issue of the Journal of Cold Regions Engineering that examines the ice excavation required to establish and maintain an open ice pit. Excavating an open ice pit is a very non-linear applied glaciology problem, as the excavation of ice from an open ice pit enhances subsequent ice flow into the open ice pit. This is because ice velocity is very sensitive to changes in ice geometry, with third and fourth order dependencies on ice slope and thickness respectively! The paper examines scenarios based on excavating an open ice pit on the Greenland ice sheet margin that extends 1000 m into the ice sheet, with a 200 m high ice wall. That is the approximate dimension of the Isua Prospect, Greenland, which is projected to excavate about 36,000,000 tonnes of glacier ice per year.
Working with such unnatural combinations of ice slope and ice thickness compels you to reconsider fundamental principles of glacier mechanics, such as the appropriate relation between stress and strain at tremendous basal shear stresses, which are inconceivable in virtually all natural glacier settings. Despite an increasingly pressing need for a comprehensive understanding of how glaciers respond to highly transient forcings, however, most private sector glacier management projects cannot contribute meaningful observational data to advance such fundamental science due to proprietary considerations. Perhaps that can change in the future!
W. Colgan. 2014. Considering the ice excavation required to establish and maintain an open ice pit. Journal of Cold Regions Engineering. 28: 04014003. doi:10.1061/(ASCE)CR.1943-5495.0000067. Available here.
Supplementary online material (including animations): http://www.williamcolgan.net/som/CRENG113

Cross sectional ice velocities flowing into an open ice pit at excavation years 2.5 (left) and 10.0 (right) sampled from 30-year animations. Dashed black line denotes original ice surface, dash red line denotes ice pit wall. (from Colgan, 2014)
Tags: Isua, Kumtor, open ice pit