BLOG

Jakobshavn

Shifting Ice-Sheet Catchments

Posted by William Colgan on November 18, 2024
Climate Change, Communicating Science, New Research / No Comments

Greenland’s Jakobshavn Glacier (locally known as Sermeq Kujalleq) is one of the fastest-moving glaciers in the world and a major contributor to sea-level rise. We have a new study looking at the ice-sheet area, or catchment, that Jakobshavn drains. One of the approaches for assessing the mass balance, or health, of Jakobshavn is the input-output method. This method differences iceberg discharge into the ocean across the grounding line from net snow accumulation within its upstream catchment. This means you need a pretty good idea of Jakobshavn’s catchment area. But, today’s currently available delineations of Jakobshavn’s catchment area vary by ±12%. This uncertainty in catchment area translates into an uncertainty in area-integrated net snow accumulation.

Figure 1 – Four widely used delineations of Jakobshavn Glacier’s ice-sheet catchment vary by ±12%, or approximately ±10,000 km2. Although we want to understand how Jakobshavn’s catchment will evolve over the coming century, it is challenging to simply agree on its delineation today.

Glacier catchments are not constant through time. For this study, we looked at how Jakobshavn’s catchment area might evolve in the future. We used an ensemble of future ice flow simulations created for the Ice Sheet Model Inter-comparison Project (ISMIP6) to delineate Jakobshavn’s catchment under different climate scenarios to the year 2100. The ensemble suggests that Jakobshavn’s catchment could expand by 3–9%, depending on the intensity of ocean and atmospheric warming of a given climate scenario. These changes in Jakobshavn’s catchment appear to trigger a phenomenon called “dynamic piracy,” whereby Jakobshavn is essentially stealing ice from its neighboring glaciers, redirecting it into its own flow toward the ocean.

Figure 2 – The Jakobshavn Glacier catchment area delineated in 2015 and 2100 in thirteen ISMIP6 ensemble members. There is a diversity of model opinion on how Jakobshavn’s catchment looks, both today and tomorrow, but the ensemble generally agrees that catchment area will expand over the next century.

Generally, however, the ensemble of models has some challenges reproducing recently observed reorientations in inland ice flow. The models are generally less sensitive to climate change, producing less acceleration than actually observed. All but one of the ensemble members fail to reproduce recent accelerations in ice flow observed about 100 km inland from Jakobshavn’s terminus. We interpret this as suggesting that the current ensemble of models likely underestimates future reorientations in deep inland ice flow. Simply put, they may not fully capture how rapidly the ice sheet’s catchments are reorganizing themselves under future climate change.

Figure 3 – Comparison of modelled ice acceleration and rotation with the mean observed at ten GPS stations clustered at approximately 100 km inland from Jakobshavn’s terminus. The ensemble of models has difficulty reproducing this recently observed reorganization of inland ice flow.

Our analysis of the ISMIP ensemble reminds us that big outlet glaciers are not just passive responders to climate change; they actively reshape their catchments in ways that ripple through the ice sheet. So, if we want accurate glacier-scale input-output assessments, then we need to have accurate glacier-scale catchments, both today and in the future. This highlights the importance of improving our delineation of ice-sheet catchments using both observational methods and ice flow models. This also means continually improving the ice flow models used to predict the future form and flow of Earth’s ice sheets.

Løkkegaard A., W. Colgan, A. Aschwanden and S.A. Khan. 2024. Recent and future variability of the ice-sheet catchment of Sermeq Kujalleq (Jakobshavn Isbræ), Greenland. Journal of Glaciology. 1-15. https://doi.org/10.1017/jog.2024.73

Tags: , , , , , , , ,

Greenland Bedrock Uplift and Iceberg Discharge

Posted by William Colgan on August 22, 2021
New Research / Comments Off on Greenland Bedrock Uplift and Iceberg Discharge

We have a new open-access study linking bedrock uplift and iceberg discharge at three major Greenland outlet glaciers in the last issue of Geophysical Research Letters. We look at recent changes in observed uplift rates and ice discharges at Jakobshavn, Kangerlussuaq and Helheim Glaciers. The idea of the study was to explore what we thought was a rather straightforward relation between uplift and discharge – uplift rates are relatively high when discharge rates are relatively high (and vice versa) – and see if there as any predictive power in this relation.  

The uplift rates are observed at GNet GPS stations and the ice discharges are observed by satellite-derived ice velocity combined with knowledge of ice thickness. When we analyzed these records, we found that the uplift-discharge relation is indeed very statistically strong, but – rather counterintuitively – at two of the glaciers it was bedrock uplift that serves as a good predictor for ice discharge. Simply put, rather than changes in bedrock uplift lagging changes in ice discharge, we instead found that changes in ice discharge lag changes in bedrock uplift. Clearly, surface mass balance is the primary and instantaneous driver of elastic bedrock uplift; bedrock uplift increases immediately after a big melt and runoff event. We are effectively showing that the associated ice discharge response is lagged.

Figure 1 (a) Predicted detrended dynamic ice loss from past GNet GPS data at Jakobshavn Glacier (blue curve) and satellite-observed ice discharge (black curve). (c) Same as (a) but for Helheim Glacier. (d) Cumulative dynamic records instead of detrended records. (f) Same as (d) but for Helheim Glacier. Note the differing offsets between records at Jakobshavn and Helheim Glaciers.

At Jakobshavn Glacier, changes in ice discharge appear to lag changes in bedrock uplift by almost one year (0.87 years). Simply put, if there is a big melt and uplift event in August, the ice discharge response will peak the following June. If we trust this relation, recent uplift observations at Jakobshavn Glacier suggest that ice discharge will return to pre-2018 levels by the end of 2021. This would mark a clear end to a three-year period of relatively low ice discharge and ice-sheet thickening in the lower reaches of the ice stream over the 2016-2018 melt seasons. At Helheim Glacier, by contrast, there was no significant lead or lag; changes in uplift rate seem completely coincident with changes in ice discharge. Simply put, peak uplift and ice dischrage tends to be simultaneous.

Figure 2 Locations of the KAGA G-Net station at Jakobshavn Glacier (left) and the HEL2 G-Net station at Helheim Glacier. The relation between bedrock uplift and ice discharge is dependent on many local factors like geology, ice configuration, and glacier hydrology.

You can speculate that this uplift-discharge relation changes from glacier to glacier around Greenland due on local differences in bedrock geology and glacier dynamics or hydrology. Reflecting, for example, the elastic modulus of the bedrock or the reservoir time of englacial hydrology of each glacier. The sensitivity of this relation – meaning how many mm/yr uplift per Gt/yr mass loss – also varies from GPS station to GPS station based on the local ice configuration and distance of the GPS station to the center of ice loss. These relations are therefore only valid over local scales.

Overall, however, it does seem possible to use the GNet stations to develop local relations between bedrock uplift and ice discharge on a glacier-by-glacier basis all the way around Greenland. This would be very helpful for using GPS stations to reconstruct detailed records of local ice loss prior to the 2016 onset of weekly satellite monitoring of ice discharge. Exploring this uplift-discharge relation at more GNet stations may also help us understand exactly why sub-annual changes in ice discharge appear to be lagging changes in vertical bedrock motion at some glaciers. Any new clues about processes that regulate Greenland’s ice discharge into the ocean are always valuable!

Hansen, K., Truffer, M., Aschwanden, A., Mankoff, K., Bevis, M., Humbert, A., van den Broeke, M., Noel, B., Bjørk, A., Colgan, W., Kjær, K., Adhikari, S., Barletta, V., and S. Khan. (2021). Estimating ice discharge at Greenland’s three largest outlet glaciers using local bedrock uplift. Geophysical Research Letters, 48, e2021GL094252. https://doi.org/10.1029/2021GL094252

Tags: , , , , , , , , , , ,