BLOG

Monthly Archives: August 2021

Greenland Bedrock Uplift and Iceberg Discharge

Posted by William Colgan on August 22, 2021
New Research / No Comments

We have a new open-access study linking bedrock uplift and iceberg discharge at three major Greenland outlet glaciers in the last issue of Geophysical Research Letters. We look at recent changes in observed uplift rates and ice discharges at Jakobshavn, Kangerlussuaq and Helheim Glaciers. The idea of the study was to explore what we thought was a rather straightforward relation between uplift and discharge – uplift rates are relatively high when discharge rates are relatively high (and vice versa) – and see if there as any predictive power in this relation.  

The uplift rates are observed at GNet GPS stations and the ice discharges are observed by satellite-derived ice velocity combined with knowledge of ice thickness. When we analyzed these records, we found that the uplift-discharge relation is indeed very statistically strong, but – rather counterintuitively – at two of the glaciers it was bedrock uplift that serves as a good predictor for ice discharge. Simply put, rather than changes in bedrock uplift lagging changes in ice discharge, we instead found that changes in ice discharge lag changes in bedrock uplift. Clearly, surface mass balance is the primary and instantaneous driver of elastic bedrock uplift; bedrock uplift increases immediately after a big melt and runoff event. We are effectively showing that the associated ice discharge response is lagged.

Figure 1 (a) Predicted detrended dynamic ice loss from past GNet GPS data at Jakobshavn Glacier (blue curve) and satellite-observed ice discharge (black curve). (c) Same as (a) but for Helheim Glacier. (d) Cumulative dynamic records instead of detrended records. (f) Same as (d) but for Helheim Glacier. Note the differing offsets between records at Jakobshavn and Helheim Glaciers.

At Jakobshavn Glacier, changes in ice discharge appear to lag changes in bedrock uplift by almost one year (0.87 years). Simply put, if there is a big melt and uplift event in August, the ice discharge response will peak the following June. If we trust this relation, recent uplift observations at Jakobshavn Glacier suggest that ice discharge will return to pre-2018 levels by the end of 2021. This would mark a clear end to a three-year period of relatively low ice discharge and ice-sheet thickening in the lower reaches of the ice stream over the 2016-2018 melt seasons. At Helheim Glacier, by contrast, there was no significant lead or lag; changes in uplift rate seem completely coincident with changes in ice discharge. Simply put, peak uplift and ice dischrage tends to be simultaneous.

Figure 2 Locations of the KAGA G-Net station at Jakobshavn Glacier (left) and the HEL2 G-Net station at Helheim Glacier. The relation between bedrock uplift and ice discharge is dependent on many local factors like geology, ice configuration, and glacier hydrology.

You can speculate that this uplift-discharge relation changes from glacier to glacier around Greenland due on local differences in bedrock geology and glacier dynamics or hydrology. Reflecting, for example, the elastic modulus of the bedrock or the reservoir time of englacial hydrology of each glacier. The sensitivity of this relation – meaning how many mm/yr uplift per Gt/yr mass loss – also varies from GPS station to GPS station based on the local ice configuration and distance of the GPS station to the center of ice loss. These relations are therefore only valid over local scales.

Overall, however, it does seem possible to use the GNet stations to develop local relations between bedrock uplift and ice discharge on a glacier-by-glacier basis all the way around Greenland. This would be very helpful for using GPS stations to reconstruct detailed records of local ice loss prior to the 2016 onset of weekly satellite monitoring of ice discharge. Exploring this uplift-discharge relation at more GNet stations may also help us understand exactly why sub-annual changes in ice discharge appear to be lagging changes in vertical bedrock motion at some glaciers. Any new clues about processes that regulate Greenland’s ice discharge into the ocean are always valuable!

Hansen, K., Truffer, M., Aschwanden, A., Mankoff, K., Bevis, M., Humbert, A., van den Broeke, M., Noel, B., Bjørk, A., Colgan, W., Kjær, K., Adhikari, S., Barletta, V., and S. Khan. (2021). Estimating ice discharge at Greenland’s three largest outlet glaciers using local bedrock uplift. Geophysical Research Letters, 48, e2021GL094252. https://doi.org/10.1029/2021GL094252

Tags: , , , , , , , , , , ,

Rainfall on the Greenland Ice Sheet

Posted by William Colgan on August 04, 2021
Climate Change, New Research / 2 Comments

We have a new open-access study in the current issue of Geophysical Research Letters that looks at rainfall over the Greenland Ice Sheet. In many places around the globe, rainfall is a big player in the water budget. But on the ice sheet, rainfall has traditionally been a small player in ice-sheet mass balance. In fact, virtually all of the automatic weathers stations deployed on the ice sheet today don’t even measure rainfall. These ice-sheet stations are instead optimized to measure accumulation from snowfall and ablation from melt. But, as major rainfall events are pushing higher and higher on to the ice sheet each year, that is starting to change. Today, there are a few research groups experimenting with different ice-sheet rainfall gauges.

Figure 1 – Average annual rainfall (left) and trend in annual rainfall (right) over the 1980 to 2019 period. Evaluation weather stations identified by WMO (World Meteorological Organization) numbers: Aasiaat (04220), Sisimiut (04230), Nuuk (04250), Narsarsuaq (34270), Danmarkshavn (34320), and Ittoqqortoormiit (34339).

In our new study, we simulate rainfall over the ice-sheet using a regional climate model. Specifically a “non-hydrostatic” model. This class of model is supposed to reproduce the continuum mechanics of atmospheric flow better than traditional “hydrostatic” models. The traditional hydrostatic models make some simplifying assumptions that can influence atmospheric flow and precipitation, especially across grid cells with high topographic relief. In the absence of ice-sheet rainfall observations, we compared the simulated rainfall to several weather stations operating in communities around Greenland’s coast. This comparison showed that the model could reasonably simulate the rainfall, including extreme events, that was observed at these weather stations. This gives us some confidence that the model’s rainfall physics are similarly faithful on the ice sheet.

Over the forty-year period 1981–2010, the model simulates increases in both rainfall and rainfall intensity, across the ice sheet and especially in late summer. We specifically find that total September rainfall increased by 224% over this period. The maximum intensity of September rainfall also increased by 54% during this same period. This is consistent with the expectation that the summer melt season will lengthen and intensify in a warming climate. Some of the most pronounced increases in rainfall were seen in Northwest Greenland. There, the rainfall fraction of precipitation is about twice the ice-sheet average. We speculate that this increasing trend in rainfall in Northwest Greenland may be related to a northward shift in the limit to which relatively warm and moist mid-latitude airmasses can penetrate each summer.

Figure 2 – September maximum hourly rainfall rates over the ice sheet and each sector. For the entire ice sheet (GrIS), as well as southeast (SE), south (S), and southwest (SW) sectors, linear trends are indicated together (dashed lines).

A large rainfall event can have a similar influence on ice dynamics as a large melt event. Once liquid meltwater enters the ice sheet, flowing in the en- and sub-glacial hydrology systems, there are myriad of ways it can make ice flow faster. Chief among these is warming and softening the ice (so the ice internally deforms and flow more easily) and pressurizing the subglacial hydrology system (so the ice-sheet slides more easily). For this reason, there is also an ice dynamic interest in big rainfall events. Some of the most pronounced increase in extreme rainfall events (i.e. >5 cm per hour) were in South Greenland. There, the ice sheet is most exposed to mid-latitude storms from the North Atlantic. There is an expectation for the intensity of storms to increase in a warming climate.

We will probably hear a lot more about rainfall on the Greenland Ice Sheet in the coming years. Hopefully, once some of the technical challenges are overcome, we will start to see the systematic collection of continuous rainfall measurements on the ice sheet. Given our current climate trajectory, we will also start to see rainfall comprising a larger portion of the annual ice-sheet water budget, especially in ice-sheet basins in South Greenland. There are already several studies linking rainfall events to ice motion at lower elevations, but presumably these links will also start to be made at higher elevations. There is a lot of research to do on the topic of ice-sheet rainfall!

M. Niwano, J. E. Box, A. Wehrlé, B. Vandecrux, W. T. Colgan and J. Cappelen. 2021. Rainfall on the Greenland Ice Sheet: Present-Day Climatology From a High-Resolution Non-Hydrostatic Polar Regional Climate Model. Geophysical Research Letters. https://doi.org/10.1029/2021GL092942.

Tags: , , , , , , ,