BLOG

Communicating Science

Greenland’s “Recent Mass Loss” Underestimated?

Posted by William Colgan on March 09, 2015
Climate Change, Communicating Science, New Research / No Comments

There are a variety of methods used to estimate the present rate of mass loss from the Greenland ice sheet, including satellite altimetry, satellite gravimetry and input-output assessments. All of these methods generally agree that since 2005 the ice sheet has been losing c. 250 Gt/yr of mass (equivalent to 8000 tonnes of ice per second). Partitioning this mass loss into climatic surface balance (i.e. snowfall minus runoff) and ice dynamic (i.e. iceberg calving) contributions is a little more challenging. Partitioning recent mass loss into surface balance or ice dynamic components requires us to look at the changes in each of these terms since a period during which the ice sheet was approximately in equilibrium. Conventionally, the ice sheet is assumed to have been in equilibrium during the 1961-1990 so-called “reference period”.1

Figure_6_mass_balance_monitoring

The three main methods of measuring present-day ice sheet mass balance: (1) snowfall input minus iceberg output, (2) changes in elevation using satellite altimetry, and (3) changes in gravity using satellite gravimetry (from Alison et al., 2014)5.

Our recently published study in the Annals of Glaciology takes a hard look at the mass balance of the high elevation interior of the Greenland ice sheet during the reference period2. We difference the ice flowing out of a high elevation perimeter from the snow falling within it, and conclude that the ice sheet was likely gaining at least 20 Gt/yr of mass during the reference period. This implies that rather than ice sheet mass balance decreasing from c. 0 Gt/yr (or “equilibrium”) during reference period to c. -250 Gt/yr since 2005, it may have actually decreased from c. +20 Gt/yr of subtle mass gain during reference period to c. -250 Gt/yr since 2005. This interpretation would mean the “recent” (pre-1990 to post-2005) mass loss of the ice sheet is actually 7 % greater than might conventionally be assumed (270 vs. 250 Gt/yr). Seven percent more recent mass loss than conventionally assumed might not sound like much, but it becomes important when we try to partition mass loss in surface balance or ice dynamics components.

reference_period

Illustration of how a subtle mass gain during reference period (1961-1990) , when the Greenland ice sheet is conventionally assumed to have been in approximate equilibrium, can influence the magnitude of “recent mass loss” used to partition surface balance and ice dynamics components of mass loss.

We also assessed whether surface balance or ice dynamics were responsible for subtle reference period mass gain. We concluded it was more likely long term ice dynamics, resulting from the downward advection through the ice sheet of the transition between relatively soft Wisconsin ice (deposited > 10.8 KaBP) and relatively hard Holocene ice (deposited < 10.8 KaBP). In 1985, Niels Reeh proposed that subtly increasing effective ice viscosity was resulting in cm-scale ice sheet thickening3. Increased iceberg calving, or enhanced ice dynamics, are conventionally assumed to be responsible for c. 100 Gt/yr of recent mass loss4. Since we conclude ice dynamics were likely responsible for subtle reference period mass gain, we are implying that mass loss due to ice dynamics may actually be c. 20 Gt/yr greater than conventionally assumed, or c. 120 Gt/yr rather than c. 100 Gt/yr since 2005. Without invoking any departures from the conventional view of changes in surface balance since reference period, this infers 20 % more mass loss due to ice dynamics since reference period. This becomes important if diagnostic ice sheet model simulations are calibrated to underestimated recent ice dynamic mass loss, which may subsequently bias prognostic model simulations to similarly underestimate future ice dynamic mass loss.

Wisconsin_Tiff

An ice sheet composed of relatively hard Holocene ice is theoretically c. 15 % thicker than one composed of relative soft Wisconsin ice. Today’s ongoing transition from Wisconsin to Holocene ice within the Greenland ice sheet should theoretically result in cm-scale transient thickening (after Reeh, 1985).

Pondering how a millennial-scale shift in ice dynamics may be responsible for subtle mass gain during the 1961-1990 period, and how that ultimately influences our understanding of present-day mass loss partition, is definitely a rather nuanced topic. I am guessing there are not many non-scientists still reading at this point. Spread over the high elevation ice sheet interior, a 20 Gt/yr mass gain is equivalent to a thickening rate of just 2 cm/yr, which is within the uncertainty of virtually all mass balance observation methods, including in situ point measurements. I suppose the thrust of our study is to be receptive to the idea that millennial scale ice dynamics may be contributing to a subtle ice sheet thickening that underlies both past and present ice sheet mass balance, and to appreciate the non-trivial uncertainty in partitioning recent mass loss into surface balance and ice dynamic components that stems from the particular reference period mass balance assumption that is invoked.

1Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard, I. Velicogna and B. Wouters. 2009. Partitioning Recent Greenland Mass Loss. Science. 326: 984-986.

2Colgan, W., J. Box, M. Andersen, X. Fettweis, B. Csatho, R. Fausto, D. van As and J. Wahr. 2015. Greenland high-elevation mass balance: inference and implication of reference period (1961-90) imbalance. Annals of Glaciology. 56: doi:10.3189/2015AoG70A967.

3Reeh, N. 1985. Was the Greenland ice sheet thinner in the late Wisconsinan than now?
Nature. 317: 797-799.

4Enderlin, E., I. Howat, S. Jeong, M. Noh, J. van Angelen and M. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters. 41: doi:10.1002/2013GL059010.

5Alison, I., W. Colgan, M. King and F. Paul. 2014. Ice Sheets, Glaciers, and Sea Level Rise. Snow and Ice-Related Hazards, Risks and Disasters. W. Haeberli and C. Whiteman. Elsevier. 713-747.

Tags: , , , , , , , ,

Greenland data rescue: An appeal

Posted by William Colgan on November 24, 2014
Communicating Science, Glaciology History, New Research / No Comments

As described in this month’s newsletter No 7, the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) is nearing completion of its comprehensive database of surface mass budget observations from the Greenland ice sheet melt area and peripheral glaciers. We now have just over 2400 unique observations spanning from the 1938 Freja Glacier expedition to the present. Approximately half these observations have never been published. These historic measurements were fragmented across studies, most of which were pre-digital or unpublished, effectively making this highly valuable data inaccessible to the global research community. Despite our best efforts, however, we are still missing data from a handful of known expeditions. For example, does someone you know perhaps have a copy of Alfred Wegener’s 1930 Qaamarujuk Glacier observations? There is a chance we might even be unaware of some expeditions, especially recent private sector prospecting work. Please get in touch with Horst Machguth (homac@byg.dtu.dk) of the www.promice.dk team if you can help us out with this community data assimilation project!

Colgan, W., H. Machguth and A. Ahlstrom. 2014. Data Rescue: Greenland Surface Mass Budget Database. PROMICE newsletter No 7. Ed. S. Andersen and H. Pedersen.

database_map

Map of the location, with temporal description, of the Greenland ice sheet melt area and local glacier surface mass budget observations presently contained in the database. The grey sites are the missing data (from a manuscript in preparation).

Tags: , , , , ,

Greenland ice loss: 8300 tonnes per second

Posted by William Colgan on November 19, 2014
Communicating Science, New Research, Sea Level Rise / 1 Comment

We have a new study coming out in Earth and Planetary Science Letters that looks into the mass loss of the Greenland ice sheet (Andersen et al., 2015). We used the “input-output” approach, whereby an estimated iceberg production rate is differenced from an estimated snow accumulation rate. The input-output approach we used was slightly different from previous studies (such as Rignot et al., 2008 or Enderlin et al., 2014) because the ice sheet perimeter across which we observed ice flow (or the “flux gate”) was relatively far inland. That meant we had to make a different assumption about the vertical velocity profile at the flux gate, as well as account for changes in ice volume between the flux gate and the tidewater glacier grounding lines. We also used a new combination of satellite-derived ice surface velocity product, airborne radar-derived ice thickness observations, and surface mass balance simulations. Despite all this, our mass loss estimate agrees pretty well with previous studies!

The numbers are pretty striking: We estimate that between 2007 and 2011 the Greenland ice sheet alone, not counting all the peripheral glaciers in Greenland, lost 262 Gt of ice per year. That works out to about 8300 tonnes per second! That means the Greenland ice sheet probably weighs 250,000 tonnes less than when you started reading this blog post. No wonder we can measure its mass loss by gravitational anomalies! The ice sheet is currently losing mass via both surface runoff (the difference between accumulation and melt) and ice dynamics (the production of icebergs). We estimate that runoff comprised about 61 % of the ice sheet’s mass loss, or about 5000 tonnes per second, with iceberg production comprising the remaining 3300 tonnes per second of mass loss. Some big numbers that confirm the Greenland ice sheet is presently raising global mean sea level by about 0.73 mm per year.

Enderlin, E., I. Howat, S. Jeong, M. Noh, J. van Angelen & M. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters. 41: doi:10.1002/2013GL059010.

Rignot, E., J. Box, E. Burgess & E. Hanna. 2008. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters. 35: doi:10.1029/2008GL035417.

Andersen, M., L. Stenseng, H. Skourup, W. Colgan, S. Khan, S. Kristensen, S. Andersen, J. Box, A. Ahlstrøm, X. Fettweis & R. Forsberg. 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters. 409: 89–95. doi:10.1016/j.epsl.2014.10.015.

Greenland_InputOutput

Diagram showing differences in methodology between our study (TOP) and previous studies (BOTTOM) in converted estimated ice flux (F) into estimated iceberg production (D). We adopt a higher elevation “flux gate”, which necessitates accounting for downstream changes in ice volume (∆S), as well as making a different assumption about the vertical velocity profile at the flux gate. We also use different velocity and ice thickness observations, and a different surface mass balance (SMB) model (from Andersen et al., 2015).

Tags: , , , ,

New Book: Snow and Ice-Related Hazards

Posted by William Colgan on October 11, 2014
Communicating Science, New Research / No Comments

A new textbook, “Snow and Ice-Related Hazards, Risks, and Disasters”, is scheduled for release October 15 as part of Elsevier’s Hazards and Disasters series. With 80+ authors and 800+ pages, the textbook covers a range of diverse cryospheric hazards, from permafrost degradation to avalanches, as well as a number of glacier hazards, including chapters on: glacier surges, glacier outburst floods, glacier loss and slope stability, glacierized volcanoes, and glacier-derived sea level rise. A chapter on “Radioactive Waste Under Conditions of Future Ice Ages” even sounds mildly intriguing! The target audience is applied earth and environmental scientists. The pre-order purchase price is currently c. 100 USD via elsevier.com. As an overly keen contributing author, I have of course already ordered my copy!

Haeberli, W., and C. Whiteman (ed). 2014. Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier. ISBN: 9780123948496.

snow_ice_related_hazards_textbook_cover

Cover and spine of “Snow and Ice-Related Hazards, Risks, and Disasters” from Elsevier (ISBN: 9780123948496). (from W. Haeberli)